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NOMENCLATURE 

heat capacity of frozen layer; 
convective heat-transfer coefficient; 
thermal conductivity of frozen solid; 
latent heat of solidification; 
temperature within frozen layer; 
freezing temperature; 
temperature of coolant; 
time; 
dimensionless temperature, (7”- T)/(T’,- T,); 
coefficient of EI in the power series expansion 
0fU; 
spatial position measured from the wall; 
position of the moving interface; 
dimensionless position, hX/k; 
dimensionless thickness of frozen layer, hX,/k. 

measured from the wall, c,,, p and k are, respectively, the 
heat capacity, density and thermal conductivity of the frozen 
material. The boundary condition at the wall is of convective 
heat transfer with constant heat-transfer coefficient h, 

* 
k”T 

ax x=0 
= h[T(O, t) - T,] (2) 

where To is the temperature of the coolant. The temperature 
of frozen material at the moving interface, X = X,(t), equals 
the freezing temperature YF, 

T(Xf, t) = r,. (3) 

The energy balance. at the moving interface gives 

PLg%k!g (4) 

Greek symbols 

6, immobilized distance, x/x/; 
& Stefan number, c,(TJ- 7&%; 
0, density of frozen layer: 
7, 
‘Zi, 

Fourier number, h%/& k ; 
coefficient of si in the power series expansion of ET. 

INTRODUCTION 
THE PLANAR solidification of a saturated liquid with con- 
vection at the wall has been discussed by Carslaw and 
Jaeger [I], Lock [2], Goodman [3], and Pedroso and 
Domoto [4]. Pedrosoand Domoto [4] found a perturbation 
solution for this problem. 

In this report, a perturbation solution is obtained by the 
use of a new method [5] of the authors. The new method 
consists of (1) immobilizing the moving interface by Landau 
transformation, (2) replacing the time variable by interface 
position as inde~ndent variable, and (3) applying the 
regular parameter perturbation technique. Landau trans- 
formation makes the nonlinearity due to moving interface 
explicit. However, the use of Landau transformation in the 
perturbation solutions for bubble growth was discussed by 
Duda and Vrentas [6]. Pedroso and Domoto [4] replaced 
the time variable by the interface position to obtain a 
perturbation for this problem and similar solidification 
problems [7]. Replacing time variable by the interface 
position was also used by Siegel and Savino [8] in finding 
the analytical iterative solutions of moving boundary 
problems. 

ANALYSIS 

For planar solidification of a saturated liquid with con- 
vection at the wall and constant physical properties of the 
frozen material, the temperature ~stribution T(X, t) satisfies 
the transient heat-conduction equation. 

dT i?I*T 

U‘ u‘t 1x=x, 

where L is the latent heat of solidification. Assuming zero 
initial thickness of frozen material yields the initial con- 
dition of equation (41, 

X,(O) = 0. 

Introducing the dimensionless variables 

hX 
x=- 

k 

hXJ 
XJ = - 

k 

h’t 
5=- 

pc,k 

E = cp(TJ- To) 
L 

Tf-T 
u=-. 

T,- To 

Equations (l-5) become 

au azu -=- 
a7 ax= 

au 
ax x=o 

= U(O,5)-1 

u(xJ, 7) = 0 

dxs _ au 
dr -% x=xj I 

XJfO) = 0. 

Notice that U = U(x, 7) and X~ = X,(T). 
The interface position is immobilized by using 

x 

(5) 

(6) 

(7) 

@f 

(9) 

(10) 

(11) 

where t is the time variable, X is the spatial position 
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a=-_ 
x/ 

(12) 
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as spatial variable. Transformation of V(X, r) into ti(S, xf) 
yields 

?(Xf] = 0, at Xf = 0 m 
r is thus expressed as function of xy. 

The regular parameter perturbation method is used with 

US, x,) = Vcl(6, x,) “+sU,(6, X,)+EZLia(S, X,r) 
+&3rJ,(s,X~)+.... (18) 

Substituting equation (18) into equations (13~(15) and 
equating coeEcients ofequaf powers of E give 

The analytical solutions of equations (W-25) are 

+ lO(1 +x,)fl2f 3x~+x$)(3+x$)sz (28) 

-(360+225x~+114xj+19x;)(1+x,S)] 

a 1, 

x [(l +x,)17+ xss)s6-(7i-xr)(l+xss 

+63(1+x&-4+24x,+9xf+3xj?) 

with boundary conditions 

duo 

_I as g-0 
= #MO,x,)-11 

x [(l+x~)(s+x,s)s”-(5sx~)(l+x,6)] 

(23) 
+7(2160+840x,+525x~+102x~+17x;) 

x E(l+x,)(3+x,6)BZ-(3+xf,(1+xf6)]). 

dUj 
-/ = X,ff,(O,X,), 
86 *=o 

i= 1*x.., 

Ui(L X,) = 4 i = 0, 1,2, I.. . 

(24) The position of the moving interface is also taken 
power series expansian of ET(x~), 

(25) E$Xf) = 70(x/) +&tl(rf) +&‘72(X,) +&%&)+. . . 

TabIe 1. First four terms of the freezing time 

50 
0.2 
0.4 a4800 
O-6 0.7800 
0% I.120 
1.0 I??00 
i.2 1,920 
1.4 2380 
1.6 2880 
1.8 3.420 
2.0 4000 
2.2 4620 
2.4 5~280 
26 5980 
2-g 6720 
3.0 7.500 
4.0 12GO 
5.0 1750 

5oooo 04looo ooooo 
0.01778 -0~001564 -00M3954 
OX%476 -0008194 - @002868 
0.1350 - 0.01932 - 0.~76~ 
02252 -503398 -@01400 
03333 -0*05139 -002158 
@4582 -007109 - @03006 
05989 - OG9289 -0.03932 
0*7549 -0.01164 - OG4926 
09257 -0.1418 - 0.05986 
1.1111 - 0.1690 - 0.07109 
i-3108 -01979 - OG8294 
1.525 - Q2285 - CJ@9542 
1.752 -02508 -0.1085 
1.994 - 0.2948 -0.1222 
2*250 - 0.3305 -0.1366 
3.733 - 0.5348 -0.2177 
S*SSS - @7823 -0.3147 

04lOOO 
oG003945 
OGO2846 
WI07488 
o-01368 
M2092 

0.03768 

0.05692 

007854 

0.1025 

0.1292 
0.2068 
03008 

(2% 

asa 

(30) 

*Values obtained by 141. 
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Substitution of equations (18) and (30) into equation (16) 
and equating the coefficients of equal powers of E yield 

To = ~;‘~l~Z1~lx,dx, (31) 

71 = ~~‘(~I~=~~I~=~-‘xldXl (32) 

zz = [:‘[&I+,)~+l+~ 

- (!$l~=~](~1~=1~3x~dx, (33) 

[z~i.-l)~l~.~~~_l) 

- (%j&=,)XZ!._,) 

s XI 

r3 = 

cl 

-rs16=J]eI )-‘x,dx, (34) 

where equation (17) has been used. Evaluation of Q,, rl 
and 72 by the use of equations (16)-(29) one obtains 

Tg = 3[(1 +x/)2- l] (35) 

rl =~[(1+~,)3-3(1+~~)+21 (36) 

‘L2 =45(1-:x,)‘[~1+x,~6-5~L+x,~3+9~1+x,~-51 (37) 

53 = 75q;:x,), [64(1+x,)g+315(1+x,)7-2O58(1+x,)6 

+4725(1 +x,)~ -6804(1+~,)~+4725(1 +x,)’ 

+135ql+x,)2-3717(1+x,)+ 14001. (38) 

Higher order solutions of ui and Z, may be obtained by the 
same procedure. However, algebraic manipulation is com- 
plicated. 

RESULTS AND DISCUSSION 

The effect of E on the interface position is illustrated in 
Fig. 1. The departure from the quasi-steady state solution, 
i.e. zero-order solution, increases as Stefan number, E, 
increases as well as x, increases. 

Table 1 shows the values of 70, TV, r2 and 7j for the 
values of normalized interface position up to x, = 5. The 
values of rO, T, and 52 are consistent with the result of 
Pedroso and Domoto [4]. The values of 73 are quite 
different from the values of 73 of [4], which are also listed 
in Table 1. The difference between the perturbation method 
of this communication and Pedroso and Domoto [4] 
method is the use of Landau transformation in this com- 
munication. Landau transformation makes the nonlinearity 
due to moving interface explicit. Therefore, perturbation 
method can be used in a straightforward manner. 
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NOMENCLATURE 

a, wave number ; 
a0, critical wave number; 
‘4, parameter defined in equation (17); 
c, solute concentration (salinity); 
c, mean horizontal concentration; 
d, porous layer thickness; 
d P’ characteristic pore length; 

gravitational acceleration; 9. 
H, solute advection spectrum; 
Hj;! coefficient in the series expanded for H; 
K permeability; 
N, number of terms in the series expanded for 

ti and y; 

*On leave from Technion, Haifa, Israel. 

Pe, Peclet number (Ud,,/K,); 
Re, Reynolds number (Ud,/v); 
s, number of terms in the series expanded for S; 
S, Rayleigh number (a,gAcKd/vslc,); 
SO> critical Rayleigh number; 
S 
S::’ 

parameter defined in equation (9); 
Schmidt number (V/K,); 

u, module of velocity vector; 
X, horizontal coordinate ; 
2, vertical coordinate. 

Greek symbols 

a,, coefficient relating salinity with density; 
Y, salinity perturbation; 
l-2, coefficient in the series expanded for y; 


