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NOMENCLATURE
Cps heat capacity of frozen layer;
h, convective heat-transfer coefficient;
k, thermal conductivity of frozen solid;
L, latent heat of solidification;
T, temperature within frozen layer;
Ty, freezing temperature;
To, temperature of coolant;
t, time;
U, dimensionless temperature, (T; — )T, — Tp);
u;, coefficient of ¢ in the power series expansion
of U;
X, spatial position measured from the wall;
Xy,  position of the moving interface;
X, dimensionless position, hX/k;
Xy, dimensionless thickness of frozen layer, hX,/k.
Greek symbols
8, immobilized distance, x/x;
X Stefan number, ¢,(T,— To)/L:
o, density of frozen layer;
T, Fourier number, h’t/pc,k;
“Ti coefficient of ¢’ in the power series expansion of ez.
INTRODUCTION

THE PLANAR solidification of a saturated liquid with con-
vection at the wall has been discussed by Carslaw and
Jaeger [1], Lock [2], Goodman {3], and Pedroso and
Domoto [4]. Pedroso and Domoto [4] found a perturbation
solution for this problem.

In this report, a perturbation solution is obtained by the
use of a new method [5] of the authors. The new method
consists of (1) immobilizing the moving interface by Landau
transformation, (2) replacing the time variable by interface
position as independent variable, and (3) applying the
regular parameter perturbation technique. Landau trans-
formation makes the nonlinearity due to moving interface
explicit. However, the use of Landau transformation in the
perturbation solutions for bubble growth was discussed by
Duda and Vrentas [6]. Pedroso and Domoto [4] replaced
the time variable by the interface position to obtain a
perturbation for this problem and similar solidification
problems [7]. Replacing time variable by the interface
position was also used by Siegel and Savino [8] in finding
the analytical iterative solutions of moving boundary
problems.

ANALYSIS

For planar solidification of a saturated liquid with con-
vection at the wall and constant physical properties of the
frozen material, the temperature distribution T(X, ) satisfies
the transient heat-conduction equation.
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where t is the time variable, X is the spatial position

measured from the wall, c,, p and k are, respectively, the
heat capacity, density and thermal conductivity of the frozen
material. The boundary condition at the wall is of convective
heat transfer with constant heat-transfer coefficient h,
oT
P
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where Ty is the temperature of the coolant. The temperature
of frozen material at the moving interface, X = X (1), equals
the freezing temperature Ty
T(X;,0) = Ty. 3

The energy balance at the moving interface gives
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where L is the latent heat of solidification. Assuming zero

initial thickness of frozen material yields the initial con-
dition of equation (4},
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Equations (1-5) become
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Notice that U = U(x, 1) and x; = x ().
The interface position is immobilized by using
X
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as spatial variable. Transformation of U{x, t) into U(d, x )

yields
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7 15 thus expressed as function of x,
The regular parameter perturbation method is used with
U(d,x5) = Uold, xp) +8U (8, x5) + 2 U 5(8, %)
+eU3(d, xp)+.... (18)

Substituting equation (I8) into equations {13)-{15} and
equating coefficients of equal powers of ¢ give
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The analytical solutions of equations {19~25) are
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Table 1. First four terms of the freezing time
Xg Tg Ty Ty T3 Tg
00 0-0000 00000 0-0000 0-0000 0-0000
02 02200 001778 -0-001564 —0-0003954 0-0003945
04 0-4800 006476 —0-008154 —0-002868 0002846
06 07800 01350 - 001932 —0-007604 0-007488
08 1120 02252 —0-03398 ~0-01400 0-01368
-0 1500 3333 —005139 —0-02158 402092
12 1920 04582 - 007109 —0-03006
14 2:380 (5989 —0-09289 -0-03932 0-03768
1-6 2-880 07549 —-001164 ~-0-04926
18 3420 09257 -01418 —0:05986 005692
2:¢ 4000 1111 —0-1690 — 007109
22 4620 1-3108 —01979 — 008294 007834
24 3280 1525 —02285 —009542
26 5980 1752 —0-2608 — 01085 01025
28 6720 1994 —~ (2948 —0-1222
30 7-500 2250 —0-3305 — 01366 01292
40 12:00 3733 —0-5348 —0-2177 0-2068
50 17-50 5-555 —07823 —0-3147 0-3008

*Values obtained by [4].
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Substitution of equations (18) and (30) into equation (16)
and equating the coefficients of equal powers of ¢ yield
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where equation (17) has been used. Evaluation of 7,4, T,
and 1, by the use of equations (16)-(29) one obtains
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+4725(1 4 x,)° — 6804(1 + x)* + 4725(1 + x,,)°
+1350(1+x,)2 — 3717(1 + x) + 1400} (38)

Higher order solutions of U; and 7; may be obtained by the
same procedure. However, algebraic manipulation is com-
plicated.
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RESULTS AND DISCUSSION

The effect of ¢ on the interface position is illustrated in
Fig. 1. The departure from the quasi-steady state solution,
ie. zero-order solution, increases as Stefan number, &,
increases as well as x increases.

Table 1 shows the values of 4, 7,, t; and t3 for the
values of normalized interface position up to x, = 5. The
values of 74, T; and 7, are consistent with the result of
Pedroso and Domoto [4]. The values of t; are quite
different from the values of 73 of [4], which are also listed
in Table 1. The difference between the perturbation method
of this communication and Pedroso and Domoto [4]
method is the use of Landau transformation in this com-
munication. Landau transformation makes the nonlinearity
due to moving interface explicit. Therefore, perturbation
method can be used in a straightforward manner.

REFERENCES

1. H.S.Carlaw and J. C. Jaeger, Conduction of Heat in Solids,
2nd edn, p. 292, Oxford University Press, London (1959).

2. G. 8. H. Lock, On the perturbation solution of the ice-
water layer problem, Int. J. Heat Mass Transfer 14, 642
(1971).

3. T. R. Goodman, The heat-balance integral and its appli-
cation to problems involving a change of phase, Trans.
Am. Soc. Mech. Engrs 80, 335 (1958).

4. R. 1. Pedroso and G. A. Domoto, Exact solution by
perturbation method for planar solidification of a satu-
rated liquid with convection at the wall, Int. J. Heat
Mass Transfer 16, 1816 (1973).

S. C. L. Huang and Y. P. Shih, Perturbation solutions of
planar diffusion-controlled moving-boundary problems,
Int. J. Heat Mass Transfer 18, 689 (1975).

6. J. L. Duda and J. S. Vrentas, Perturbation solutions of
diffusion-controlled moving boundary problems, Chem.
Engng Sci. 24, 461 (1969).

7. R. L. Pedroso and G. A. Domoto, Perturbation solutions
for spherical solidification of saturated liquids, J. Heat
Transfer 95, 42 (1973).

8. R. Siegel and J. M. Savino, An analysis of the transient
solidification of a flowing warm liquid on a convectively
cooled wall, Proc. 3rd Int. Heat Transfer Conf., Vol. 4,
pp. 141-151. Am. Soc. Mech. Engrs, New York (1966).

Printed in Great Britain

ON THE ANALYSIS OF CELLULAR CONVECTION IN POROUS MEDIA

HILLEL RUBIN*
Civil Engineering Department, University of Florida, Gainesville, FL 32611, U.S.A.

(Received 9 September 1974 and in revised form 25 April 1975)

NOMENCLATURE
a, wave number;
ao, critical wave number;
A, parameter defined in equation (17);
¢, solute concentration (salinity);
é, mean horizontal concentration;
d, porous layer thickness;
dp, characteristic pore length;
g, gravitational acceleration;
H, solute advection spectrum
H®,  coefficient in the series expanded for H;
K, permeability;
N, number of terms in the series expanded for

¥ and y;

*On leave from Technion, Haifa, Israel.

Pe, Peclet number (Ud,/x,);
Re, Reynolds number (Ud,/v);

s, number of terms in the series expanded for S;
S, Rayleigh number (x,gAcKd/vex,);

So, critical Rayleigh number;

Soss parameter defined in equation (9);

Sc, Schmidt number (v/k;);

U, module of velocity vector;

X, horizontal coordinate;

z, vertical coordinate.

Greek symbols
Oy, coefficient relating salinity with density;
A salinity perturbation;
I, coefficient in the series expanded for y;



